

TSH94

HIGH SPEED LOW POWER QUAD OPERATIONAL AMPLIFIER (WITH **STANDBY** POSITION)

2 SEPARATE STANDBY : REDUCED CONSUMPTION AND HIGH IMPEDANCE OUTPUTS

■ LOW SUPPLY CURRENT: 4.5mA/amp. typ.

■ HIGH SPEED: 150MHz - 110V/us

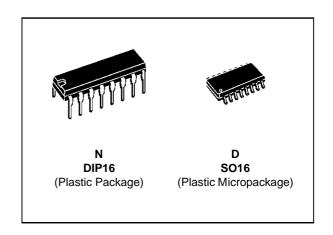
UNITY GAIN STABILITY

■ LOW OFFSET VOLTAGE: 3mV

■ LOW NOISE 4.2 nV/√Hz

■ LOW COST

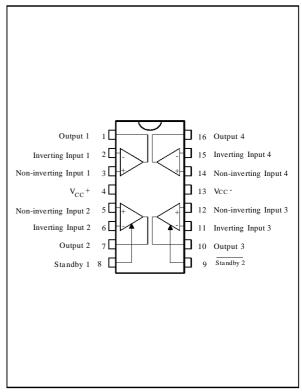
■ SPECIFIED FOR 600Ω AND 150Ω LOADS


■ HIGH VIDEO PERFORMANCES:

Differential Gain: 0.03% Differential Phase: 0.07°

Gain Flatness: 6MHz, 0.1dB max. @ 10dB

gain


■ HIGH AUDIO PERFORMANCES

ORDER CODES

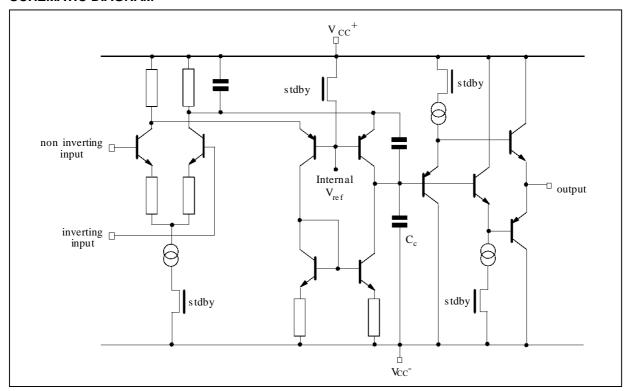
Part Number	Temperature Range	perature Range N	kage	
Fait Number	remperature range	N D		
TSH94I	-40, +125°C	•	•	

PIN CONNECTIONS (top view)

DESCRIPTION

The TSH94 is a quad low power high frequency op-amp, designated for high quality video signal processing. The device offers an excellent speed consumption ratio with 4.5mA/amp. for 150MHz bandwidth.

High slew rate and low noise make it also suitable for high quality audio applications.


The TSH94 offers 2 separate complementary **STANDBY pins**:

- STANDBY 1 acting on the n° 2 operator
- STANDBY 2 acting on the n° 3 operator

They reduce the consumption of the corresponding operator and put the output in a high impedance state.

January 1996 1/10

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage - (note 1)	14	V
V _{id}	Differential Input Voltage - (note 2)	±5V	V
Vi	Input Voltage - (note 3)	-0.3 to 12	V
T _{oper}	Operating Free Air Temperature Range	-40 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

All voltage values, except differential voltage are with respect to network ground terminal.
 Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
 The magnitude of input and output voltages must never exceed V_{CC}⁺ +0.3V.

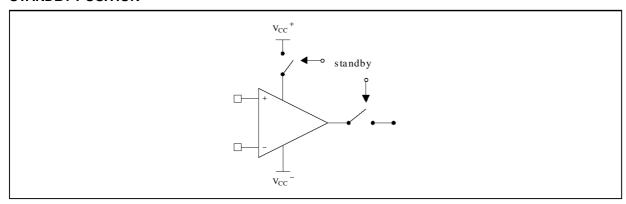
OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	7 to 12	V
Vicm	Common Mode Input Voltage Range	Vcc +2V to Vcc +-1	V

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = 5V, V_{CC}^- = -5V, pin 8 connected to 0V, pin 9 connected to V_{CC}^+ , V_{CC}^+ = 25°C (unless otherwise specified)

Symbol	Parameter		Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage ($V_{ic} = V_0 = 0V$) $T_{min.} \le T_{amb.} \le T_{max.}$				3 5	mV
l _{io}	$\begin{array}{l} \text{Input Offset Current} \\ T_{\text{min.}} \leq T_{\text{amb.}} \leq T_{\text{max.}} \end{array}$			1	2 5	μΑ
I _{ib}	Input Bias Current $T_{min.} \le T_{amb.} \le T_{max.}$			5	15 20	μΑ
Icc	Supply Current (per amplifier, no load) $T_{min.} \le T_{amb.} \le T_{max.}$			4.5	6 8	mA
CMR	Common Mode Rejection Ratio ($V_{ic} = -3V$ to +4 $T_{min.} \le T_{amb.} \le T_{max.}$	$V, V_0 = 0V$	80 70	100		dB
SVR	Supply Voltage Rejection Ratio ($V_{CC} = \pm 5V$ to $\pm T_{min.} \le T_{amb.} \le T_{max.}$	-3V)	60 50	75		dB
A _{vd}	Large Signal Voltage Gain ($R_L = 10k\Omega$, $V_O = \pm 2$ $T_{min.} \le T_{amb.} \le T_{max}$.	2.5V)	57 54	70		dB
V _{OH}	R_L^-	= 600Ω = 150Ω = 150Ω	3 2.5 2.4	3.5 3		V
V _{OL}	R_L^-	= 600Ω = 150Ω = 150Ω		-3.5 -2.8	-3 -2.5 -2.4	V
Io	Output Short Circuit Current ($V_{id} = \pm 1V$) $T_{min.} \le T_{amb.} \le T_{max.}$	Source Sink Source Sink	20 20 15 15	36 40		mA
GBP	Gain Bandwidth Product $(A_{VCL} = 100, R_L = 600\Omega, C_L = 15pF, f = 7.5MHz)$)	90	150		MHz
f⊤	Transition Frequency			90		MHz
SR	Slew Rate (A _{VCL} = +1, R _L = 600Ω , C _L = $15pF$,	$I_{in} = -2 \text{ to } +2V$	70	110		V/μs
Øm	Phase Margin (A _{VM} = +1)			35		Degrees
en	Equivalent Input Noise Voltage ($R_s = 50\Omega$, $f = 1$	kHz)		4.2		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
V _{O1} /V _{O2}	Channel Separation (f = 1MHz to 10MHz)			65		dB
Gf	Gain Flatness (f = DC to 6MHz, A _{VCL} = 10dB)				0.1	dB
THD	Total Harmonic Distortion (f = 1kHz, V _o = ±2.5\	$'$, $R_L = 600\Omega$)		0.01		%
ΔG	Differential Gain (f = 3.58MHz, A _{VCL} = +2, R _L =	· · · · · · · · · · · · · · · · · · ·		0.03		%
Δφ	Differential Phase (f = $3.58MHz$, A_{VCL} = $+2$, R_L	= 150Ω)		0.07		Degree


STANDBY MODE

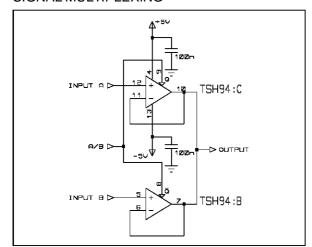
 $V_{CC}^+ = 5V$, $V_{CC}^- = -5V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{SBY}	Pin 8/9 Threshold Voltage for STANDBY Mode	V _{CC} ⁺ -2.2	V _{CC} ⁺ -1.6	V _{CC} ⁺ -1.0	V
Ісс ѕву	Total Consumption Standby 1 & 2 = 0 Standby 1 & 2 = 1 Standby 1 = 1, Standby 2 = 0		13.7 13.7 9.4		mA
I _{sol}	Input/Output Isolation (f = 1MHz to 10MHz)		70		dB
t _{ON}	Time from Standby Mode to Active Mode		200		ns
toff	Time from Active Mode to Standby Mode		200		ns
I_{D}	Standby Driving Current		2		pА
I _{OL}	Output Leakage Current		20		pА
I _I Γ	Input Leakage Current		20		pА

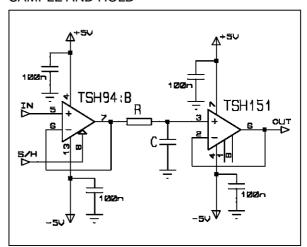
LOGIC	INPUT	STATUS			
Standby 1 Standby 2		Op-amp 2	Op-amp 3	Op-amp 1 & 4	
0	0	Enable	Standby	Enable	
0	1	Enable	Enable	Enable	
1	0	Standby	Standby	Enable	
1	1	Standby	Enable	Enable	

STANDBY POSITION

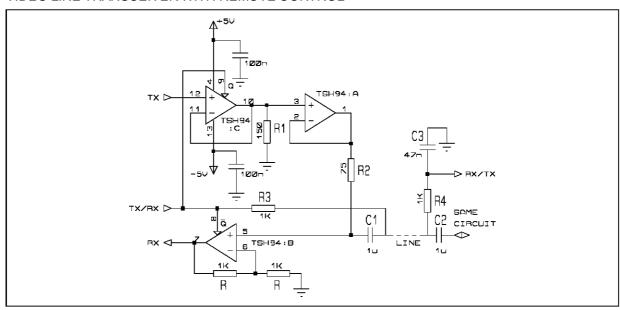
STANDBY MODE


To put the device in standby, just apply a logic level on the standby MOS input. As ground is a virtual level for the device, threshold voltage has been refered to V_{CC}^+ at V_{CC}^+ - 1.6V typ.

In standby mode, the output goes in high impedance in 200ns. Be aware that all maximum rating

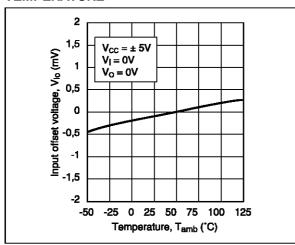

must still be followed in this mode. It leads to swing limitation while using the device in signal multiplexing configuration with followers, differential input voltage must not exceed $\pm 5V$ limiting input swing to 2.5Vpp.

APPLICATIONS

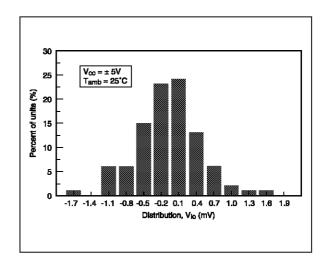

SIGNAL MULTIPLEXING

SAMPLE AND HOLD

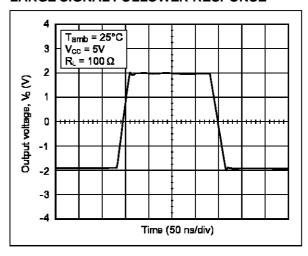
VIDEO LINE TRANSCEIVER WITH REMOTE CONTROL

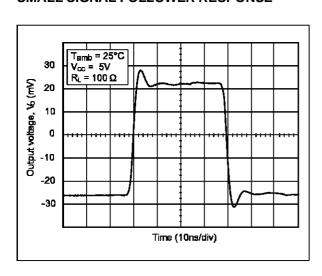

PRINTED CIRCUIT LAYOUT

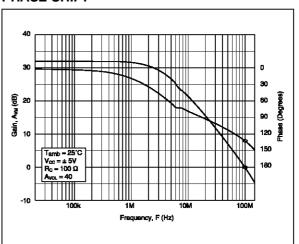
As for any high frequency device, a few rules must be observed when designing the PCB to get the best performances from this high speed op amp. From the most to the least important points:


- Each power supply lead has to be by-passed to ground with a 10nF ceramic capacitor very close to the device and 10μF capacitor.
- To provide low inductance and low resistance common return, use a ground plane or common point return for power and signal.
- All leads must be wide and as short as possible especially for op amp inputs. This is in order to decrease parasitic capacitance and inductance.
- Use small resistor values to decrease time constant with parasitic capacitance.
- Choose componentsizes as small as possible (SMD).
- On output, decrease capacitor load so as to avoid circuit stability being degraded which may cause oscillation. You can also add a serial resistor in order to minimise its influence.

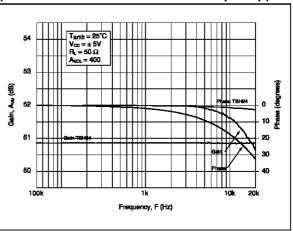
INPUT OFFSET VOLTAGE DRIFT VERSUS TEMPERATURE

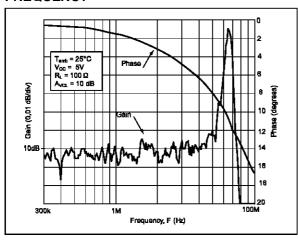

INPUT OFFSET VOLTAGE DISTRIBUTION


STATIC OPEN LOOP VOLTAGE GAIN

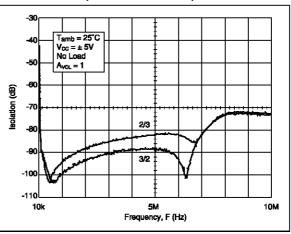

LARGE SIGNAL FOLLOWER RESPONSE

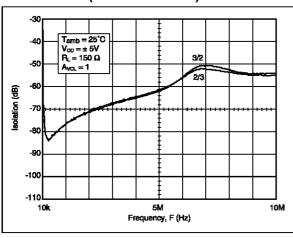
SMALL SIGNAL FOLLOWER RESPONSE

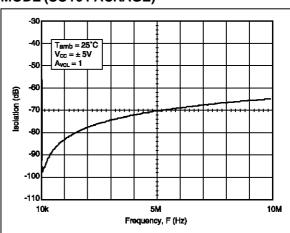

OPEN LOOP FREQUENCY RESPONSE AND PHASE SHIFT

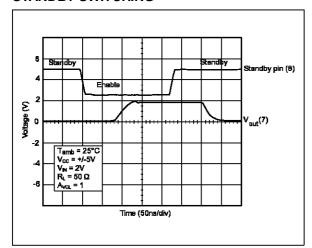

CLOSE LOOP FREQUENCY RESPONSE

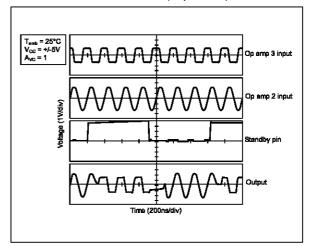
16 12 Avc. = 3 Avc. = 2 4 100k 1M 100M 100M 100M 100M

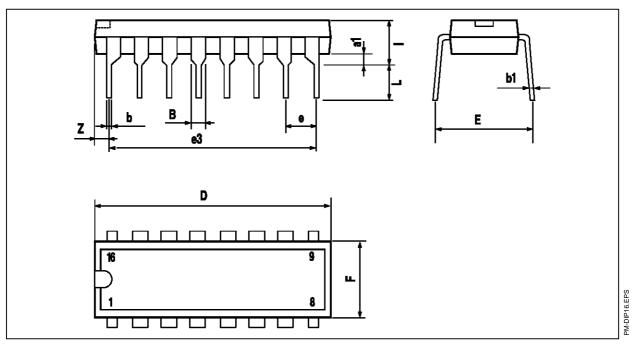

AUDIO BANDWIDTH FREQUENCY RESPONSE AND PHASE SHIFT (TSH94 vs Standard 15MHz Audio Op-Amp)


GAIN FLATNESS AND PHASE SHIFT VERSUS FREQUENCY

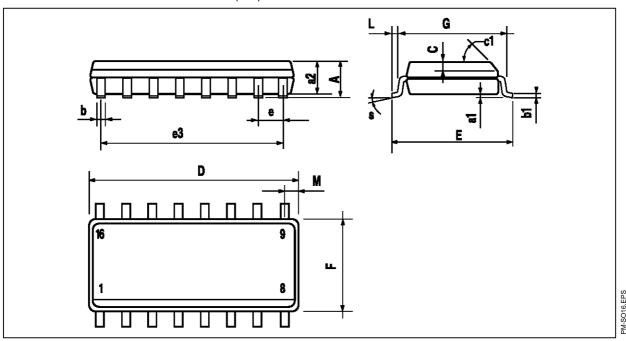

CROSS TALK ISOLATION VERSUS FREQUENCY (SO16 PACKAGE)


CROSS TALK ISOLATION VERSUS FREQUENCY (SO16 PACKAGE)


INPUT/OUTPUT ISOLATION IN STANDBY MODE (SO16 PACKAGE)


STANDBY SWITCHING

SIGNAL MULTIPLEXING (cf p. 5/10)


PACKAGE MECHANICAL DATA 16 PINS - PLASTIC DIP

Dimensions		Millimeters			Inches	
Dilliensions	Min.	Тур.	Max.	Min.	Тур.	Max.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
i			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

PACKAGE MECHANICAL DATA

16 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions		Millimeters			Inches	
Dillielisions	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
a1	0.1		0.2	0.004		0.008
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1			45°	(typ.)		
D	9.8		10	0.386		0.394
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.150		0.157
G	4.6		5.3	0.181		0.209
L	0.5		1.27	0.020		0.050
М			0.62			0.024
S	8° (max.)					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.